Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Clin Infect Dis ; 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2268903

ABSTRACT

Acute COVID-19 symptoms limit daily activities, but little is known about its association with SARS-CoV-2 viral burden. In this exploratory analysis of placebo recipients in the ACTIV-2/A5401 platform trial, we showed that high anterior nasal (AN) RNA levels and detectable plasma RNA were associated with delayed symptom improvement.

3.
Infect Dis Clin North Am ; 36(2): 251-265, 2022 06.
Article in English | MEDLINE | ID: covidwho-2130981

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in 2020 and has led to an unprecedented global pandemic. Understanding the virology behind SARS-CoV-2 infection has provided key insights into our efforts to develop antiviral agents and control the COVID-19 pandemic. In this review, the authors focus on the genomic features of SARS-CoV-2, its intrahost and interhost evolution, viral dynamics in respiratory tract, and systemic dissemination.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/therapeutic use , Humans , Pandemics
4.
Am J Respir Crit Care Med ; 206(7): 857-873, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2053494

ABSTRACT

Rationale: The leading cause of death in coronavirus disease 2019 (COVID-19) is severe pneumonia, with many patients developing acute respiratory distress syndrome (ARDS) and diffuse alveolar damage (DAD). Whether DAD in fatal COVID-19 is distinct from other causes of DAD remains unknown. Objective: To compare lung parenchymal and vascular alterations between patients with fatal COVID-19 pneumonia and other DAD-causing etiologies using a multidimensional approach. Methods: This autopsy cohort consisted of consecutive patients with COVID-19 pneumonia (n = 20) and with respiratory failure and histologic DAD (n = 21; non-COVID-19 viral and nonviral etiologies). Premortem chest computed tomography (CT) scans were evaluated for vascular changes. Postmortem lung tissues were compared using histopathological and computational analyses. Machine-learning-derived morphometric analysis of the microvasculature was performed, with a random forest classifier quantifying vascular congestion (CVasc) in different microscopic compartments. Respiratory mechanics and gas-exchange parameters were evaluated longitudinally in patients with ARDS. Measurements and Main Results: In premortem CT, patients with COVID-19 showed more dilated vasculature when all lung segments were evaluated (P = 0.001) compared with controls with DAD. Histopathology revealed vasculopathic changes, including hemangiomatosis-like changes (P = 0.043), thromboemboli (P = 0.0038), pulmonary infarcts (P = 0.047), and perivascular inflammation (P < 0.001). Generalized estimating equations revealed significant regional differences in the lung microarchitecture among all DAD-causing entities. COVID-19 showed a larger overall CVasc range (P = 0.002). Alveolar-septal congestion was associated with a significantly shorter time to death from symptom onset (P = 0.03), length of hospital stay (P = 0.02), and increased ventilatory ratio [an estimate for pulmonary dead space fraction (Vd); p = 0.043] in all cases of ARDS. Conclusions: Severe COVID-19 pneumonia is characterized by significant vasculopathy and aberrant alveolar-septal congestion. Our findings also highlight the role that vascular alterations may play in Vd and clinical outcomes in ARDS in general.


Subject(s)
COVID-19 , Pneumonia , Respiratory Distress Syndrome , Vascular Diseases , COVID-19/complications , Humans , Lung/diagnostic imaging , Lung/pathology , Pulmonary Alveoli/pathology , Respiratory Distress Syndrome/etiology
5.
Nat Commun ; 13(1): 4931, 2022 08 22.
Article in English | MEDLINE | ID: covidwho-2000888

ABSTRACT

Anti-SARS-CoV-2 monoclonal antibodies are mainstay COVID-19 therapeutics. Safety, antiviral, and clinical efficacy of bamlanivimab were evaluated in the randomized controlled trial ACTIV-2/A5401. Non-hospitalized adults were randomized 1:1 within 10 days of COVID-19 symptoms to bamlanivimab or blinded-placebo in two dose-cohorts (7000 mg, n = 94; 700 mg, n = 223). No differences in bamlanivimab vs placebo were observed in the primary outcomes: proportion with undetectable nasopharyngeal SARS-CoV-2 RNA at days 3, 7, 14, 21, and 28 (risk ratio = 0.82-1.05 for 7000 mg [p(overall) = 0.88] and 0.81-1.21 for 700 mg [p(overall) = 0.49]), time to symptom improvement (median 21 vs 18.5 days [p = 0.97], 7000 mg; 24 vs 20.5 days [p = 0.08], 700 mg), or grade 3+ adverse events. However, bamlanivimab was associated with lower day 3 nasopharyngeal viral levels and faster reductions in inflammatory markers and viral decay by modeling. This study provides evidence of faster reductions in nasopharyngeal SARS-CoV-2 RNA levels but not shorter symptom durations in non-hospitalized adults with early variants of SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Adult , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/therapeutic use , Humans , RNA, Viral , SARS-CoV-2
6.
mBio ; 13(4): e0157722, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1909595

ABSTRACT

Persistent SARS-CoV-2 replication and systemic dissemination are linked to increased COVID-19 disease severity and mortality. However, the precise immune profiles that track with enhanced viral clearance, particularly from systemic RNAemia, remain incompletely defined. To define whether antibody characteristics, specificities, or functions that emerge during natural infection are linked to accelerated containment of viral replication, we examined the relationship of SARS-CoV-2-specific humoral immune evolution in the setting of SARS-CoV-2 plasma RNAemia, which is tightly associated with disease severity and death. On presentation to the emergency department, S-specific IgG3, IgA1, and Fc-γ-receptor (Fcγ R) binding antibodies were all inversely associated with higher baseline plasma RNAemia. Importantly, the rapid development of spike (S) and its subunit (S1/S2/receptor binding domain)-specific IgG, especially FcγR binding activity, were associated with clearance of RNAemia. These results point to a potentially critical and direct role for SARS-CoV-2-specific humoral immune clearance on viral dissemination, persistence, and disease outcome, providing novel insights for the development of more effective therapeutics to resolve COVID-19. IMPORTANCE We showed that persistent SARS-CoV-2 RNAemia is an independent predictor of severe COVID-19. We observed that SARS-CoV-2-targeted antibody maturation, specifically Fc-effector functions rather than neutralization, was strongly linked with the ability to rapidly clear viremia. This highlights the critical role of key humoral features in preventing viral dissemination or accelerating viremia clearance and provides insights for the design of next-generation monoclonal therapeutics. The main key points will be that (i) persistent SARS-CoV-2 plasma RNAemia independently predicts severe COVID-19 and (ii) specific humoral immune functions play a critical role in halting viral dissemination and controlling COVID-19 disease progression.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Kinetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viremia
9.
Emerg Microbes Infect ; 10(1): 2016-2029, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1493580

ABSTRACT

ABSTRACTA COVID-19 vaccine that can give early protection is needed to eliminate the viral spread efficiently. Here, we demonstrate the development of a nanoparticle vaccine candidate, REVC-128, in which multiple trimeric spike ectodomains with glycine (G) at position 614 were multimerized onto a nanoparticle. In-vitro characterization of this vaccine confirms its structural and antigenic integrity. In-vivo immunogenicity evaluation in mice indicates that a single dose of this vaccine induces potent serum neutralizing antibody titre at two weeks post-immunization. This is significantly higher than titre caused by trimeric spike protein without nanoparticle presentation. The comparison of serum binding to spike subunits between animals immunized by a spike with and without nanoparticle presentation indicates that nanoparticle prefers the display of spike RBD (Receptor-Binding Domain) over S2 subunit, likely resulting in a more neutralizing but less cross-reactive antibody response. Moreover, a Syrian golden hamster in-vivo model for the SARS-CoV-2 virus challenge was implemented two weeks post a single dose of REVC-128 immunization. The results showed that vaccination protects hamsters against the SARS-CoV-2 virus challenge with evidence of steady body weight, suppressed viral loads and alleviation of tissue damage for protected animals, compared with ∼10% weight loss, high viral loads and tissue damage in unprotected animals. Furthermore, the data showed that vaccine REVC-128 is thermostable at up to 37°C for at least 4 weeks. These findings, along with a history of safety for protein vaccines, suggest that the REVC-128 is a safe, stable and efficacious single-shot vaccine to give the earliest protection against SARS-CoV-2 infection.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/chemistry , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral/blood , Antibody Formation , COVID-19 Vaccines/administration & dosage , Cricetinae , Humans , Immunization , Immunization Schedule , Immunogenicity, Vaccine , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus , Vaccination , Viral Load
10.
Open Forum Infect Dis ; 8(8): ofab153, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1371740

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kinetics remain understudied, including the impact of remdesivir. In hospitalized individuals, peak sputum viral load occurred in week 2 of symptoms, whereas viremia peaked within 1 week of symptom-onset, suggesting early systemic seeding of SARS-CoV-2. Remdesivir treatment was associated with faster viral decay.

12.
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1338896

ABSTRACT

BACKGROUNDSARS-CoV-2 plasma viremia has been associated with severe disease and death in COVID-19 in small-scale cohort studies. The mechanisms behind this association remain elusive.METHODSWe evaluated the relationship between SARS-CoV-2 viremia, disease outcome, and inflammatory and proteomic profiles in a cohort of COVID-19 emergency department participants. SARS-CoV-2 viral load was measured using a quantitative reverse transcription PCR-based platform. Proteomic data were generated with Proximity Extension Assay using the Olink platform.RESULTSThis study included 300 participants with nucleic acid test-confirmed COVID-19. Plasma SARS-CoV-2 viremia levels at the time of presentation predicted adverse disease outcomes, with an adjusted OR of 10.6 (95% CI 4.4-25.5, P < 0.001) for severe disease (mechanical ventilation and/or 28-day mortality) and 3.9 (95% CI 1.5-10.1, P = 0.006) for 28-day mortality. Proteomic analyses revealed prominent proteomic pathways associated with SARS-CoV-2 viremia, including upregulation of SARS-CoV-2 entry factors (ACE2, CTSL, FURIN), heightened markers of tissue damage to the lungs, gastrointestinal tract, and endothelium/vasculature, and alterations in coagulation pathways.CONCLUSIONThese results highlight the cascade of vascular and tissue damage associated with SARS-CoV-2 plasma viremia that underlies its ability to predict COVID-19 disease outcomes.FUNDINGMark and Lisa Schwartz; the National Institutes of Health (U19AI082630); the American Lung Association; the Executive Committee on Research at Massachusetts General Hospital; the Chan Zuckerberg Initiative; Arthur, Sandra, and Sarah Irving for the David P. Ryan, MD, Endowed Chair in Cancer Research; an EMBO Long-Term Fellowship (ALTF 486-2018); a Cancer Research Institute/Bristol Myers Squibb Fellowship (CRI2993); the Harvard Catalyst/Harvard Clinical and Translational Science Center (National Center for Advancing Translational Sciences, NIH awards UL1TR001102 and UL1TR002541-01); and by the Harvard University Center for AIDS Research (National Institute of Allergy and Infectious Diseases, 5P30AI060354).


Subject(s)
COVID-19/blood , COVID-19/virology , SARS-CoV-2 , Viremia/blood , Viremia/virology , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cohort Studies , Female , Host Microbial Interactions , Humans , Male , Middle Aged , Models, Biological , Pandemics , Prognosis , Proteome/metabolism , Proteomics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Severity of Illness Index , Virus Internalization
13.
Hepatol Commun ; 5(3): 434-445, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-986168

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with adverse outcomes, including need for invasive mechanical ventilation and death in people with risk factors. Liver enzyme elevation is commonly seen in this group, but its clinical significance remains elusive. In this study, we calculated the Fibrosis-4 (FIB-4) score for a cohort of hospitalized patients with COVID-19 and assessed its association with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, inflammatory cytokine levels, and clinical outcome. A total of 202 hospitalized participants who tested positive for SARS-CoV-2 by nasopharyngeal sampling were included in this analysis. FIB-4 was calculated for each participant using the alanine aminotransferase, aspartate aminotransferase, age, and platelet count. We evaluated the association between FIB-4 and mortality using both multivariate logistic regression and Cox proportional hazards model. Correlations between FIB-4 and SARS-CoV-2 RNA and cytokine levels were evaluated using the Spearman test. Among the 202 participants, 22 died. The median FIB-4 in participants who survived and died were 1.91 and 3.98 (P < 0.001 by Mann-Whitney U test), respectively. Each one-unit increment in FIB-4 was associated with an increased odds of death (odds ratio, 1.79; 95% confidence interval, 1.36, 2.35; P < 0.001) after adjusting for baseline characteristics including sex, body mass index, hypertension, diabetes, and history of liver diseases. During hospitalization, FIB-4 peaked and then normalized in the survival group but failed to normalize in the death group. FIB-4 was positively correlated with the level of SARS-CoV-2 viral load and monocyte-associated cytokines, especially interleukin-6 and interferon gamma-induced protein 10. Conclusion: FIB-4 is associated with mortality in COVID-19, independent of underlying conditions including liver diseases. FIB-4 may be a simple and inexpensive approach to risk-stratify individuals with COVID-19.

14.
Nat Commun ; 11(1): 5493, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-894389

ABSTRACT

The relationship between SARS-CoV-2 viral load and risk of disease progression remains largely undefined in coronavirus disease 2019 (COVID-19). Here, we quantify SARS-CoV-2 viral load from participants with a diverse range of COVID-19 disease severity, including those requiring hospitalization, outpatients with mild disease, and individuals with resolved infection. We detected SARS-CoV-2 plasma RNA in 27% of hospitalized participants, and 13% of outpatients diagnosed with COVID-19. Amongst the participants hospitalized with COVID-19, we report that a higher prevalence of detectable SARS-CoV-2 plasma viral load is associated with worse respiratory disease severity, lower absolute lymphocyte counts, and increased markers of inflammation, including C-reactive protein and IL-6. SARS-CoV-2 viral loads, especially plasma viremia, are associated with increased risk of mortality. Our data show that SARS-CoV-2 viral loads may aid in the risk stratification of patients with COVID-19, and therefore its role in disease pathogenesis should be further explored.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Pneumonia, Viral/virology , Adult , Aged , Antibodies, Viral/blood , Betacoronavirus/genetics , Betacoronavirus/growth & development , Biomarkers/blood , C-Reactive Protein , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Female , Hospitalization , Humans , Inflammation/blood , Inflammation/virology , Interleukin-6/blood , Longitudinal Studies , Massachusetts/epidemiology , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , RNA, Viral/blood , SARS-CoV-2 , Severity of Illness Index , Viral Load , Viremia/blood , Viremia/virology
15.
EBioMedicine ; 59: 102903, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-671129

ABSTRACT

BACKGROUND: The accurate detection of SARS-CoV-2 through respiratory sampling is critical for the prevention of further transmission and the timely initiation of treatment for COVID-19. There is a diverse range of SARS-CoV-2 detection rates in reported studies, with uncertainty as to the optimal sampling strategy for COVID-19 diagnosis and monitoring. METHODS: We performed a systematic review and meta-analysis of studies comparing respiratory sampling strategies for the detection of SARS-CoV-2 RNA. The inclusion criteria were studies that assessed at least two respiratory sampling sites (oropharyngeal swab, nasopharyngeal swab, and sputum) in participants with COVID-19. The percentage positive tests were compared between sampling modalities by constructing a Z-test assuming independence and using the standard errors obtained from the random effects meta-analysis. FINDINGS: From 1039 total studies, we identified 11 studies that met our inclusion criteria, with SARS-CoV-2 testing results from a total of 3442 respiratory tract specimens. Compared to nasopharyngeal swab sampling, sputum testing resulted in significantly higher rates of SARS-CoV-2 RNA detection while oropharyngeal swab testing had lower rates of viral RNA detection. Earlier sampling after symptom onset was associated with improved detection rates, but the differences in SARS-CoV-2 RNA detection by sampling method was consistent regardless of the duration of symptoms. INTERPRETATION: The results support sputum sampling as a valuable method of COVID-19 diagnosis and monitoring, and highlight the importance of early testing after symptom onset to increase the rates of COVID-19 diagnosis. FUNDING: This study was funded in part by the NIH grants U01AI106701 and by the Harvard University for AIDS Research (NIAID 5P30AI060354).


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Nasopharynx/virology , Oropharynx/virology , Pneumonia, Viral/diagnosis , Sputum/virology , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/virology , Databases, Factual , Humans , Pandemics , Pneumonia, Viral/virology , RNA, Viral/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL